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Considered is the static boundary value problem of the asymmetric theory of ela- 
sticity for media in which the moment effects [couple stresses] supply a small 

contribution to the elastic energy. The elastic coefficients in the equilibrium 
equations, having the dimensions of a squared length, are taken to be small in 
comparison with the squares of the characteristic aimensions of the body. One 
obtains the solution of the equilibrium equations, containing small parameters 

in the leading derivatives. By an approximation method one constructs the solu- 
tion for the field of displacements and rotations in the form of the sum of their 

classical limits and moment terms having the form of boundary layer functions. 

Boundary conditions of kinematic type are considered and a scheme is developed 
in order to satisfy them by the method of successive approximations. 

Most of the media whose viscoelastic behavior is described within the limits 

of the asymmetric continuum mechanics (liquid) crystals, ferromagnetics, in a 
series of cases dislocation media and suspensions) are characterized by a small 
contribution of the moment terms in the general energetic balance of the defor- 
mation and flow processes. However, without taking into account the interaction 
of the moments one cannot give and interpretation to an entire series of delicate 
singularities of their viscoelastic behavior (the effects of the elastic distortion in 
the field of directions of the axes of molecular orientation in liquid crystals, the 

formation of spin waves in ferromagnetics, the effects of hardening in the plastic 

deformation, peculiarities of blood flow, etc.) In connection with this there 
arises the problem of analyzing the simplifications which can be introduced in 

the asymmetric mechanics by the investigation of media with weak moments. 

Below we consider elastic isotropic media which are characterized by additi- 

onal coefficients of rotational elasticity y and moment elasticity 11, r, 6 [11. 
The energetic contribution of the moment terms to the elastic potential is deter- 
mined by the ratio between these coefficients and tne moduli h, p of the class- 
ical elasticity. If these ratios are small (in some sense which will be specified 

later), then we will say that the medium has weak moments[couple stresses]. For 
such media we investigate boundary value problem of the asymmetric elasticity 
theory. 

1. Formulation of the problsm. The equilibrium equations in the compo- 
nents of the displacement U and of the rotations Q for an isotropic nongyrotropic medium 
can be written in the form p] 
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(A + 2p) grad div U - (p - y) rot rot U - 2y rot $2 :~ 0 (1.1) 

(q -k z -t (3) grad div Q - 8 rot rot s2 + 2ys2 - y rot U :- 0 

For the sake of brevity we do not consider body forces and body couples. We restrict 

ourselves to the analysis of boundary conditions of the kinematic type: on the boundary 

8 of the simple connected domain v the displacements and rotations are given as func- 

tions of the coordinates 92, 9s of the boundary surface 

u I* = V ((1% q3)r 9 Is = G (qs, q3) (1 .a) 

It is convenient to represent the system (1.1) in the reduced form c2] 

(h + 2~) grad div U* - p rot rot U* L 0 (1.3) 

X12grad div 62” - 17,~ rot rot W - 9* = 0 (1.4) 
Here 

U=UK-~2rotQK, R --_ Q ic -1 ‘1% rot U’” 

/j s = 
1 - (2y)-1 (7 + T -tc@), Ii22 : - (2py)-Q (p -y), m2 -- 0 ii p 

(1.5) 
The boundary conditions (1.2) for the new unuIlown functions U * , 62” obtain the form 

(U* - m2 rot St*) jS = V, (Q* + ‘i2 rot U “) 1s = G (1.6) 

We note that Eq. (1.3) coincides with the equilibrium equation of the classical elasticity 
theory. 

The equilibrium equations of the asymmetric theory in the reduced form (1.3). (1.4) 
and the boundary conditions (1.6) contain three positive c2] coefficients ki2, /C~‘, m2, 
representing the ratios of the elastic moduli p, y, 7, r, 0 and having the dimension of 

a squared length. The real quantities /pi, k2, m can be considered as characterizing 
the given medium by lengths. They serve as a measure of the deviation of the displace- 

ments and rotations from their classical limits and they allow to define qualitatively a 
medium with weak moments. 

In order to introduce corresponding dimensionless parameters, we consider two linear 
measqes which are characteristic for the given boundary value problem: the measure 

of the variation of the linear dimensions ~‘of the body (for example the displacement 

of some characteristic point of the body) and the space measure 1. For the latter we can 
take a characteristic dimension of the body or of the domain of nonhomogeneity of the 
stress field. Then the relative quantities II* i v3, Q* are functions of the following 

dimensionless arguments: x / 1, !/ 11 , z / 1, I’, p J h, k12 / I”, kz2 i 12, m2 / lv’, where 
r is the collection of dimensionless parameters related to the geometry of the domain v 

A medium with weak moments can be defined by the condition of smallness of the di- 

mensionless parameters 
X.i2 J 12, ii,' I l’, m2 I lu” 4< 1 (1.7) 

Indeed, if these quantities are equal to zero, then it is obvious from (1.4). (1.5) that 
the displacement field is exactly equal to its classical limit and the rotations coincide 
with the curl of this field. However, it may happen, depending on the form of the fun- 
ction G ,that the second boundary condition (1.6) does not degenerate into the classical 
relation when the parameters (1.7) tend to zero. In addition, as it will be proved later, 
Eq. (1.4) has a solution which does not tend to zero at this limiting process. This 
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degeneration of moment effects for residual phenomena at the boundary of the domain 
shall be called quasiclassical approximation in the asymmetric theory and it will be in- 

vestigated in the sequel. 
We begin the investigation of the boundary value problem (l-3), (1.4), (1.6) for small 

values of the parameters (1.7) with the analysis of Eq, (1.4) and then that of the bound- 

ary conditions (1.6). The solution of this equation can be reduced [2] to the solution of 
the Klein-Gordon scalar and vector equations 

k12V2q - cp = 0, k22VW - 0 = 0 W) 

and can be represented in the form 

Q* = @ + k12 grad 9, div Q, = 0 (1.9) 

2. The rolutlon of the Klein-Gordon equation with A tmrll prr- 
ometer at the highest derivative. We consider the scalar equation (1.8) 
from which we will also obtain the solution of the vector equation. This equation contains 
a small parameter k, at the highest derivative and therefore its solution cannot be rep- 

resented in the form of a power series in k, with uniform convergence in the entire do- 

main including the boundary. The solution must be sought in the form of an asymptotic 

series in boundary layer type functions [3, 41. 
It is convenient to renresent the solution of the first emcation of (1.8) in the form 

cp - x’ exp (L,-l Aq) + x- exp (- k,-’ A u) (2.1) 

where Aq is the distance from the boundary to the given point measured in the direction 
of the exterior normal. The factors exp (&i-l Aq) and exp (- h-,-l Aq) are standard 
boundary layer functions for the inner anu outer domains, respectively. By definition, 
they are equal to unity on the boundary (Aq = 0) for arbitrary values of /or, including 
zero. The functions x+, x- = x (/cl, 2, y. 2) are determined from (1.8) by the method 
of successive approximations and usually have the form of asymptotic series in boundary 
layer functions. For their construction one selects a representation of the differential 

equation in a small neighborhood of the boundary which gives a convergent iteration pro- 

cess [3]. 
Below we suggest a representation of the first equation of (1.8) in the finite neighbor- 

hood of the boundary. This not only gives a convergent process of approximation but 

allows also to obtain X’, X- not as asymptotic but as power series in k,. This repres- 

entation is obtained in me so-called “layer” curvilinear coordinates 41, Qs, qs. 
We construct in the neighborhood of the boundary a family of surfaces which are equi- 

distant with respect to the surface s. On the latter we define an ortnogonal system of 

surface curvilinear coordinates q2, q3 and we construct a coordinate line qr+ orthogonal 
to the family. 

Obviously, the coordinate lines qr are straight lines. The Lame coefficients are: 

fii = 1, fi2 = fi2 (qi, qs, qa), Hs = Ha \ql, qs, (13. In addition 

grad Aq = e, (2.2) 

where e, is the unit vector of the coordinate line qi having at the boundary the direc- 
tion of the exterior normal. We denote the unit vectors of the coordinate lines Qz, ys 

by ea, es. 
We substitute (2.1) into the first equation of (1.8). Taking into account (2.2) we ob- 

tain a system of two conjugate equations for the functions $9 X- 
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k,W+ + N arlr = 0, k,V”x- - ;$ “;q;- - ___ = 0 (H = ~H,H,) (2.3) 

It is essential that the solutions of these equations are uniformly convergent with res- 

pect to h-r in the entire domain including the boundary. 

This follows from the fact that for k, = 0 there is no loss in boundary conditions for 

the system (2.3) as it happens in the case of the equations which give the boundary layer 

type solution [31. Indeed, for $ = 0 from (2.3) we obtain a system of two equations 

of the first order, whose characteristics are normal to the boundary. Therefore .x+, x- 
contain each an arbitrary function of the boundary coordinates qz, q3. With the help of 

these functions, as it will be proved in the sequel, one can satisfy all the boundary con- 

ditions of the Klein-Gordon equations. 
The system (2.3) represents the first equation of (1.8) in a finite neighborhood of the 

boundary, called the “layer” zone, In general, the coordinates under consideration cannot 
be introduced in the entire domain irrespective of the geometry of its boundary, since 
the coordinate straight lines cannot intersect within the domain. The zone in which these 

intersections are missing (the layer zone), in a series of cases has a bounded width, which 
for a smooth convex surface cannot exceed the minimal positive radius of curvature of 

the surface. For nonsmooth surfaces one has to exclude the neighborhood of the edges. 

In spite of the boundedness of the layer zone, the solution ‘p of the first equation of 

(1. 8) can be extended to the entire domain taking into account the properties of the 
boundary layer type solution. This can be achieved in a particularly simple way in the 

case when the width of the boundary layer is substantially smaller than the width v of 

the layer zone 
k, 1 0, k, i Q e 1 (2.4) 

The asymptotic factors in (2.1) beyond the layer zone (1 Aq ) > Q) can be taken 

equal to zero. Then the relation (2.1) with the functions X+9 X- obtained from (2.3), 
gives the solution of the first equation of (1.8) in the entire domain. 

The condition (2.4) for media with weak moment is satisfied, as a rule, with a margin 

(for ferromagnetics kr - iP5 cm). Otherwise, they must be considered as additional 

restrictions on tL geometry of the boundary. 
We consider now the determination of the functions X+, X-. We represent them, in 

agreement with the previous assertion, in the form of power series in k, 

Substituting these series into (2.3) we obtain for XnfV Xn- a chain of equations 

2 aHx,r+ 
H an 

= qTy$_l (n co, 1, 2,...) (2.6) 

(Here and in the sequel the superscripts correspond to the function X+C and the subscripts 
to the function X- ). Solutions of (2.6) are given by the recursion relations 

(2.7) 

where an’, a,- are arbitrary functions of the boundary coordinates q2, qs, which are 
determined from the boundary conditions, 
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For the sake of simplicity we consider Dirichlet boundary conditions 

cp Is = cp” (C?Zl 43) (2.8) 

together with the conditions of boundedness at zero for the interior and at infinity for 
the exterior problem. Then from (2.1) we obtain for the interior problem 

x- = 0, x+ Is = (Ps (Aq < 6) (2.9) 

and for the exterior problem 

x+ = 0, x- Is = (Ps (Aq 3 6) (2.10) 

Satisfying these boundary conditions in each approximation with the help of (2.7), we 
obtain Aq 

&+ = x0- = $C x:+1 = x;+i = -&- s HV2xn*% (2.11) 
0 

These expressions can be written in the form 

(R”cpSH” = cp”H”) 

where R" is the nth power of the operator R. 
Substituting these formulas into (2.5) we obtain the functions Xt and X” 

Since there is no explicit expression for the operator (1 - hi@-1 , one has to make 

use of its expansion in a series in k,, restricting oneself to the necessary number of terms. 
let us verify the convergence of the approximation process under consideration. Making 

use of the formula for the finite sum of a decreasing geometric progression, we can write 
the remainder in (2.13) 

We form the remainder of the solution 9, i.e. G,,+l = H-lg,+,exp (/cl-l Aq), and we 

substitute it into the first equation of (1.8). After transformation we obtain 

(,9,2vs _ 1) G,+, = A:+’ exp (k,-‘Aq) & (R”rpSHS) 

The operator R contains derivatives of the second order with respect to qs, qa and de- 
rivatives of the first order with respect to q,. If the boundary function cps and the geo- 

metric parameter H”are zntimes differentiable with respect to qs, q3, and if H is 
(n + 1) times differentiable with respect to ql, then the remainder in the equation is 
of order kln+l. 

Thus, the considered representation of the first equation of (1.8) in the layer zone 
allows us to obtain its approximate solution in a relatively simple form (2.1). (2.13). 
The equation is satisfied with the given degree of accuracy, while the boundary condi- 
tions are satisfied exactly. 

The results obtained for the Klein-Gordon scalar equation can be extended to the case 
of the vector equation. We give the basic results 
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CD = f + exp (k,-‘Aq) + f- exp (- &-lAq) 

f+ = -g kp’lfnl_t, f,+ = + (A,+- 7 s HVaf?-ldql) 
71 z 1 

(A$ = A$ (q2, qs), f$ = 0, I( = 0, &2, . . .) 

(2.24) 

(2.15) 

3. The rolution of the fundrmentrl problem. We obtain the solution 
of the equation (1.4) for small k,, kz by making use of the forms of the approximate 

solutions of the Klein-Gordon equatibns 

cp = k,-l~ exp (k,-lA.q), @ = f exp (k,-ldq) (Aq S 0) (3.1) 

We will consider only the interior problem, therefore we will omit the superscript at 

the quantities p, x, @, f . In addition, in the first formula of (3.1) we have introduced 
for convenience the normalizing factor k,‘l. As before, the amplitudes of the functions 

x, f are determined by the formulas (2.5), (2.7), (2.15), but now the arbitrary funct- 
ions an, A, are determined from the boundary conditions (1.6). 

We recall that Q* is expressed in terms of 0 and @ with the formula (1.9) under the 

condition div @ = 0. We examine this condition. On the basis of (3.1) we have 

div Q = (div f $- L-if(‘)) exp (k,-‘Aq) (f(l) = e,f) (3.2) 

The function div @ is, obviously, a solution of the Klein-Gordon scalar equation. It 

is known [5] that if on the boundary of a simply connected domain a solution of this equ- 
ation is equal to zero, then for 12 a3 > 0 it is equal to zero also in the interior. ‘I’here- 

fore, in order to satisfy the condition div @ = 0 it is sufficient to set 

(div f) IS = - kc’f(‘) I9 (3.31 

Representing here f, f(l) in the form of series (2.15). we obtain for each approximation 

j!y IS = - (div fnJ I8 (f_1 = 0, n = 0, 1, 2, . . .) (3.4) 

These formulas represent the boundary conditions for fn(‘). Applying them to (2.15), we 
obtain /l(l) _ n (el [ HV2fn-ldql) I9 - 2H” (divf,_J, (A$’ = e,A,) (3.5) 

Then from (2.15) we obtain 

0 

1 f(l) = - 
n 2H [ J 

e, HVaf,_,dq, - 2H” (div f,J 1.1 
AQ 

(3.6) 

On the basis of (1.9), (3.1), (2.15), (2.5), the solution of Eq. (1.4) can be written in 
the form 

Q* = exp (k,-lAq) i k,“f, + exp (klvlAq) 5 k,” (e,x,, + k, grad x,) (3.7) 
n==o n=0 

This solution contains in f *, x,, three sequences of arbitrary functions A,c2), A,,c3), 
a, &r’, = eiA,), which must be determined from the boundary conditions imposed 
on g* and contained in (1.6). For a small parameter m the term m2 rot Q* in the 
first condition of (1.6) can be considered as a surface perturbation of the boundary 
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condition U*( % 3 v. Then $2” and U* as solutions of linear equations can be rep_ 
resented in the form 

$2” = 5 m%J,*, u* = i mnu** (3.8) 
n=0 ?I==0 

The boundary conditions with respect to the functions Q,,*, U,* (but not with respect 
to a:, U*!) can be separated. Practically, it is convenient to obtain at once the bound- 
ary conditions for Un*, xn, jn, T o t 1s end it is necessary to order (1.6) with respect h’ 

to the small parameters &, ks, m. 

We rewrite the conditions (1.6)‘ expressing Q* from (3.7) and taking into account 
that on the boundary the exponential factors are equal to unitv. 

U* Is - ms (l&-l [e, x fl + rot f) Is = V ($39 Gd) (3.9) 

(f + e,X + kl grad x + 1/a rot U*) Is = G ka, Q (3.10) 

We consider the case when the parameters kt, ksr n have the same order of smali- 
ness and represent x, f in the form of the series (2.5), (2.15) and U* in the form of the 

series (3.8). Then (3.9) gives a chain of conditions on the boundary 
(3.11) 

U,” Is = v, q* I, = s h x Cl Is, Vi!+;, I8 = (+)” hx Ll + rot f& 

From (3.10) we also obtain a chain of conditions on the boundary 

(f, + e,~) I, = G - ‘la (rot Ud*) IS (3.12) 

The conditions (3.11). (3.12) allow to determine successively the boundary values of 
the functions U ,,*, xn, f,. In order to separate the conditions (3.12) with respect to 

Xla, f,, we project them onto the directions e,, e,, es, denoting the projections by rhe 
superscript (1) - (Il),respectively, and we take into account the boundary relations (3.4) 

for fi*‘. We obtain 

x0 IS z G(l) - 1/2 (rot(l) U,?l) is, /pv”’ Is z G(2.3) - l/Z (rot@.SU,*) Is 

k~“~,+l Ir - ~~‘di~ f,, - Jc:“” * - l/~~n~I rot(‘) ult,,j (3.13) 

The relations (3.11). (3.13) represent recursion formulas which allow to compute succ- 

essively the boundary values Ulz* 1 *, x,, I,. f7, Ii. In this connection, in each approxima- 
tion it is necessary to restore the functions. vR*, xn, f, themselves which determine the 

boundary values for Vi.+,+ “I,,,; I. f71+1 in the next approxima~on. The scheme of the 
computation is the following: 

The functions f:” are obtained separately from the relations (3,6). 
We consider the first two approximations. In the zeroth approximation one finds the 

functions UO*, x0, f,. The first function is obtained by solving the boundary value prob- 
lem of the classical theory with tbe first boundary condition (3.11). From here we com- 
pute (rot U,*) / s and subsritute it into (3.13) which gives the boundary values 



X0 IS, fc’ 3)/s.. Then, by the formulas (2.7). (Z.15) the arbitrary functions a,, 0 
A (2, :i) 

are found together with the functions x0, 1,) ‘2* ‘) themselves. We add to them fy’ from 
(3.6). As a result we obtain 

a, = 2H” [Gp) - I/% (rotWJ,*) I,], 4393’ = 2HS [GW) - l/s (rot(%s) uo*) I91 

x0 = HSH-l [G(l) - 1/2 (roNJo” ) Is J (3.14) 

p) -_ - HSF1 fW.3) - 1/S (rOtW U,“) /,I, $1 = 0 

We consider now the first order approximation, Substituting the last two relations of 
(3.14) into the second condition (3.11) we obtain the boundary condition for U,*. We 
solve once again the boundary value problem of the classical theory and on the basis of 

the obtained function U,* and then of the functions x0 and i, the boundary values 

xlls, ,fr- 3)/s are computed from the second and the third relation (3.13). 
As a result, by the method of successive approximations, one can satisfy the boundary 

conditions (1.6) with any degree of accuracy. 
Thus, the method of construction of the solution of Eq. (1.4) with boundary conditions 

(1.6) reduces for small coefficients Iii, I;,, VL to solving n times the equilibrium equa- 

tion of the classical theory (1.3) with boundary conditions of kinematic type which gives 
the auxiliary functions U,L* and to the subsequent determination of the functions a,,. 

At2’ A? from the boundary conditions, 7% 7 which with the aid of (3.7), (2.15) xn and 

f, are obtained, which in turn give Q* 
We return now to the boundary value problem of the asymmetric elasticity in the first 

formulation, i.e. equilibrium equations (1.1) with the boundary conditions (1.2). Its 

solution, i.e. the field of the dispIacements u and of rotations 12 is obtained in terms 
of the functions U=*, x1*, fit, if in (1. 5) one substitutes a* from (3.7) and ti* from 

the second relation (3. S), in the form 
N N 

U--=:X mwn~k - -$- exp (kpAq) 2 k,” ([e1 X f,l + k, rot f ,,) (3.15) 
?l=,, n-=u 

R’ 
mr:rot u,I* -i- exp (~~-lA~) 2 X-,” (e,~., - ;- h, grad y,J -f-- 

-+ exp (/~,-~i\q) 2 k2”fn (Aq < 0) (3.16) 

We would like to emphasize that the obtained solution is valid for small characteristic 
lengths /ii, h:,, m of the same order of smallness and for sufficiently shallow boundaries 

of the domain, i.e. under the conditions (X.7), (2.4). 
Let us consider in detail the obtained solution. The first terms in each of the express- 

ions (3.15) (3.16) i.e. u,* and I/, rot uO* represent the “classical” components of 
the fields of the displacements U and the rotations Q respectively. All the remaining 
terms are “moment” [couple] corrections. They have a double character. 

One group of terms, containing Ut*, US*, . . ., determine the distortion of the field 

of displacements and rotations in the volume of the entire body. From the second bound- 
ary condition (3.11) and the second relation (3.13) it is clear that the source of the terms 
containing Ur*, are the rotations G at the boundary and 1/Z rot IJ”* in the volume. The 
latter are related with the nonhomogeneity of the classical field of deformations. The 
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term in (3.15) which contains U1* is of order .rr~* (k&)-l. as it follows from the second 
relation (3-11) arrl the second relation (3.13). (Here by v* one can understand the lar- 
gest displacement within the limits of the body.) This correction term may turn out to 

be essential, if v” is sufficiently small, which can occur for example in the field of 
ultrasonic waves. 

The second group of terms, containing the exponential factors, give boundary effects 
of different orders with respect to k,, kz, m. They are significantly different from zero 

only for 1 Aq 1 & k,, k,, i.e. they are concentrated in the boundary layer of width 
-- a,,k,(from here we obtain a physical in~rpretation of these characteristic lengths). 
Near the boundary, as it follows from (3.14), the boundary layer terms of order zero 
give the relative torsion angle of (; - l/s rot U ,,*, which may not be small in compari- 
son with the angle of 1/2 rot U ,,*. Thus, the degeneration of a moment medium with 

respect to the elastic properties into a classical one,is accompanied by a loss of moment 
effects inside the body but not on its boundary. 
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